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Acoustic scattering by a pair of identical parallel cylinders is studied by
emphasizing the role of the symmetries of the scatterer. Incident and scattered
®elds are expanded over the di�erent irreducible representations of C2v , the
symmetry group of the scatterer. Then, from the boundary conditions, one
obtains an in®nite set of four linear complex algebraic equations (each one
associated with a representation) where the unknown coe�cients of the
scattered ®elds are uncoupled. This method signi®cantly simpli®es the
numerical treatment of the problem. As a consequence, positions of the
scatterer resonances are determined in the complex plane of the reduced
frequency and a partial algebraic classi®cation of the resonances is obtained for
various boundary conditions (soft cylinders, hard cylinders and elastic cylinders
immersed in water). A physical interpretation of certain resonances in terms of
trapped geometrical paths is provided.

# 1999 Academic Press

1. INTRODUCTION

The study of acoustic scattering by a pair of identical parallel cylinders has been
the subject of an intense activity during the last 40 years. The most popular
approach to that physical problem is based on the techniques of multiple
scattering. For a clear presentation of multiple scattering by two cylinders, this
paper refers to the work of Young and Bertrand which simpli®es and extends the
important contributions of Twersky (see for example reference [1] and references
therein). Curiously, the use of symmetries of the two-cylinder scatterer in order
to simplify the multiple scattering formalism has never been considered in
acoustics. By contrast, in quantum physics, symmetry considerations have been
and are extensively used. See, for example, the book of Landau and Lifshitz [2]
for applications in crystallography, in atomic and molecular physics, and for
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recent applications in quantum chaos the papers of Gaspard and Rice [3] and
CvitanovicÂ and Eckhardt [4].
Symmetry considerations greatly simplify the mathematical analysis of

scattering problems. Indeed, when one considers scattering by objects of simple
shapes such as a cylinder (respectively a sphere), the invariance of the Helmholtz
equation under rotations about the cylinder axis (respectively about the center of
the sphere) leads to the search of mode solutions by separation of variables of
the form f (r) exp(imy) (respectively f (r)Ylm(y, j)). This is directly linked to the
following mathematical results: the (exp(2imy)), with m ®xed, form a basis for
a two-dimensional irreducible representation of O(2), the invariance group of the
cylinder, (respectively the spherical harmonics Ylm(y, j), with l ®xed and
m � ÿl, . . . ,� l, form a basis for the 2l+1-dimensional irreducible
representation of O(3), the invariance group of the sphere). These mathematical
considerations are implicitly used in the partial wave expansions of the incident
and scattered ®elds.
In the two-cylinder scatterer case, the invariance of a single cylinder under the

continuous group O(2) is broken, but the full system is however invariant under
a ®nite group. Indeed, the geometry of the two-cylinder scatterer, as shown in
Figure 1, is invariant under four symmetry transformations: (i) E, the identity
transformation, (ii) C2 , the rotation through p about the Oz axis, (iii) sx , the
mirror re¯ection in the plane Oxz, and (iv) sy , the mirror re¯ection in the plane
Oyz. These four transformations form a ®nite group of order 4, labelled C2v in
the mathematical literature (see for example the book of Hamermesh [5]), which
can be called the symmetry group of the scatterer. Four one-dimensional
irreducible representations labelled A1, A2, B1, B2 are associated with this
symmetry group C2v [5]. In the study of acoustic scattering by two identical
parallel cylinders, it seems then natural to express the incident and scattered
®elds as sums of functions which act as basis functions in the four irreducible
representations A1, A2, B1, B2.
In section 2, some properties of the irreducible representations A1, A2, B1, B2

of the C2v symmetry group are recalled, and the incident wave and the ®elds
scattered by each cylinder over these four representations expanded. Then, from
the boundary conditions at the surface of the cylinders, four systems of algebraic
equations are obtained, each one associated with a given irreducible
representation. The method used permits one to uncouple the pairs of unknown
coe�cients de®ning the scattered ®elds. The four systems of equations can then
be solved numerically by truncation and used to obtain the scatterer resonances.
In section 3, numerical results are presented for the positions of the scatterer
resonances in the complex plane of the reduced frequency. Numerical
calculations are performed for several boundary conditions: soft cylinders, hard
cylinders and elastic cylinders immersed in water. Symmetry considerations
permits one to partially classify the resonances. It may be necessary here to
explicitly give the meaning of the term ``resonances''. In (classical or quantum)
physics [6], a resonance is de®ned as a pole of the S-matrix associated with a
given system. This de®nition, which di�ers from the usual terminology used by
underwater acousticians is adopted. They only consider as resonances what
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should be called elastic resonances and which are linked to the eigenfrequencies

of the elastic vibrations of the scatterer. With the present de®nition, trapped

mode wavenumbers are also included. In section 4, from the Sommerfeld±

Watson transformation and asymptotic expansions of Bessel functions, certain

sequences of resonances of interaction are associated with a geometrical path

trapped between the two cylinders. In section 5, the interest of the method

presented in this paper is emphasized and future extensions in the context of

multiple scattering suggested. Furthermore, a direction of investigation is

proposed in order to obtain a full classi®cation of the two-cylinder scatterer

resonances.
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Figure 1. Two-cylinder co-ordinate systems
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2. MATHEMATICAL FORMALISM

The scattering of a plane acoustic wave by a system of two identical and
parallel cylinders of radius a is studied. The geometry of the problem as well as
the notations used are shown in Figure 1. In particular, d denotes the distance
between the axes of the two cylinders. Three cylindrical co-ordinate systems
(r1, y1, z), (r2, y2, z), and (r, y, z) are de®ned with respect to the axes of the
cylinders and the symmetry axis Oz of the system. The incident propagation
vector k is perpendicular to the Oz axis and forms an angle a with the Ox axis.
The problem is then independent of the z co-ordinate. In the co-ordinate system
(r, y) the incident wave reads

Finc�r, y� � eik
�r �

Xm��1
m�ÿ1

imJm�kr� eim�yÿa�, �1�

while the total scattered ®eld from the two cylinders can be expressed in the
form [1]

Fs � F1
s �r1, y1� � F2

s �r2, y2�, �2�
with

F1
s �r1, y1� �

Xm��1
m�ÿ1

C1
mH

�1�
m �kr1� eimy1 , �3�

F2
s �r2, y2� �

Xm��1
m�ÿ1

C2
mH

�1�
m �kr2� eimy2 : �4�

Here and in the following the exp�ÿiot� time dependence is suppressed and Jm
and H�1�m denote respectively ordinary Bessel functions of the ®rst and third kinds
[7]. Usually [1], this scattering problem is solved by applying boundary
conditions for the total ®eld Ft=Finc+Fs at the surface of each cylinder. By
means of Graf's Addition Theorem [7], an in®nite set of two linear, complex,
algebraic equations is then obtained where the unknown coe�cients C1

m and C2
m

are coupled.
In order to solve this problem, a new method based on the use of the

symmetries of the scatterer is proposed. As noted in section 1, the two-cylinder
scatterer is invariant under four symmetry transformations: (i) E, the identity
transformation, (ii) C2 , the rotation through p about the Oz axis, (iii) sx , the
mirror re¯ection in the plane Oxz, and (iv) sy , the mirror re¯ection in the plane
Oyz. These four transformations form the ®nite group of order 4, labelled C2v ,
which constitutes the symmetry group of the scatterer. The action of these
transformations on an arbitrary function F(r, y) is given by

�EF��r, y� � F�r, y�, �5�

�C2F��r, y� � F�r, p� y�, �6�
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�sxF��r, y� � F�r, ÿ y�, �7�

�syF��r, y� � F�r, pÿ y�: �8�
The multiplication table of C2v is given in Table 1. That group can be

represented by any set of four unitary matrices satisfying the multiplication

table. If there exists a unitary transformation that transforms a given matrix

representation into a diagonal or block-diagonal form, that representation is

reducible. If no unitary transformation exists the representation is irreducible.

Irreducible representations are the simplest representations: all others can be

built up from them. Four one-dimensional irreducible representations labelled

A1, A2, B1, B2 are associated with this symmetry group C2v [5]. In the

representation A1 (respectively A2, B1 and B2) the group elements E, C2, sx and

sy are represented by 16 1 matrices given in the A1 (respectively A2, B1 and B2)

column of the character table (Table 2). The character table permits one to split

any function F as a sum of functions belonging to the four irreducible

representations of C2v . Indeed, one can write

F � F�A1� � F�A2� � F�B1� � F�B2�, �9�
with F�A1�, F�A2�, F�B1�, F�B2� satisfying

EF�A1� � F�A1�, C2F�A1� � F�A1�, sxF�A1� � F�A1�, syF�A1� � F�A1�, �10�

EF�A2� � F�A2�, C2F�A2� � F�A2�, sxF�A2� � ÿF�A2�, syF�A2� � ÿF�A2�, �11�

EF�B1� � F�B1�, C2F�B1� � ÿF�B1�, sxF�B1� � F�B1�, syF�B1� � ÿF�B1�, �12�

TABLE 1

Multiplication table of C2v
E C2 sx sy

E E C2 sx sy
C2 C2 E sy sx
sx sx sy E C2

sy sy sx C2 E

TABLE 2

Character table of C2v .
C2v A1 A2 B1 B2

E 1 1 1 1
C2 1 1 ÿ1 ÿ1
sx 1 ÿ1 1 ÿ1
sy 1 ÿ1 ÿ1 1
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EF�B2� � F�B2�, C2F�B2� � ÿF�B2�, sxF�B2� � ÿF�B2�, syF�B2� � F�B2�: �13�
It can be explicitly shown from the group table that F�A1�, F�A2�, F�B1�, F�B2�

given by

F�A1� � 1
4 �E� C2 � sx � sy�F, �14�

F�A2� � 1
4 �E� C2 ÿ sx ÿ sy�F, �15�

F�B1� � 1
4 �Eÿ C2 � sx ÿ sy�F, �16�

F�B2� � 1
4 �Eÿ C2 ÿ sx � sy�F, �17�

satisfy equations (10±13). Formally, it would be necessary to distinguish between
E, C2, sx, sy considered as symmetry transformations acting in the plane Oxy
and the associated operators appearing in equations (10±17) acting on functions
de®ned on the Oxy plane. Here, in the case of the symmetry group C2v , such a
distinction is unnecessary.
The previous formalism admits a simple geometrical interpretation: if the

modulus and the argument of F�A1� (respectively F�A2�, F�B1� and F�B2�) are given
in the domain xe 0 and ye 0 of the Oxy plane, they are determined in the full
Oxy plane from symmetry considerations based on equations (10±13) and (5±8).
The incident and scattered ®elds can now be expressed as sums of functions

belonging in the four irreducible representations A1, A2, B1, B2. For the incident
®eld, the decomposition is obvious. By using equations (5±8) and (14±17), one
obtains

Finc�r, y� � F�A1�
inc �r, y� � F�A2�

inc �r, y� � F�B1�
inc �r, y� � F�B2�

inc �r, y�, �18�
with

F�A1�
inc �r, y� � 1

4

Xm��1
m�ÿ1

f�im � �ÿi�m� eÿima � �im � �ÿi�m� eimagJm�kr� eimy, �19�

F�A2�
inc �r, y� � 1

4

Xm��1
m�ÿ1

f�im � �ÿi�m� eÿima ÿ �im � �ÿi�m� eimagJm�kr� eimy, �20�

F�B1�
inc �r, y� � 1

4

Xm��1
m�ÿ1

f�im ÿ �ÿi�m� eÿima � �im ÿ �ÿi�m� eimagJm�kr� eimy, �21�

F�B2�
inc �r, y� � 1

4

Xm��1
m�ÿ1

f�im ÿ �ÿi�m� eÿima ÿ �im ÿ �ÿi�m� eimagJm�kr� eimy: �22�



CLASSIFICATION OF SCATTERING RESONANCES 791

As far as the total scattered ®eld is concerned, the decomposition is not so
obvious and it is necessary to de®ne new angular variables ~y1 and ~y2 (see Figure
1) which are more convenient to describe the action of the operators E, C2, sx
and sy on the total scattered ®eld. They are linked to y1 and y2 by the following
relations

~y1 � y1 � p
2

and ~y2 � y2 ÿ p
2
: �23�

In this new set of variables, the total scattered ®eld reads

Fs � F1
s �r1, ~y1� � F2

s �r2, ~y2�, �24�
with

F1
s �r1, ~y1� �

Xm��1
m�ÿ1

~C1
m H�1�m �kr1� eim

~y1 , �25�

F2
s �r2, ~y2� �

Xm��1
m�ÿ1

~C2
m H�1�m �kr2� eim

~y2 : �26�

The new scattering coe�cients ~Ci
m are given in terms of the previous ones by

~C1
m � C1

mi
ÿm and ~C2

m � C2
mi

m: �27�
The action of E, C2, sx and sy on Fs is then expressed in the form

EFs �
Xm��1

m�ÿ1
~C1
m H�1�m �kr1� eim

~y1 �
Xm��1

m�ÿ1
~C2
m H�1�m �kr2� eim

~y2 , �28�

C2Fs �
Xm��1

m�ÿ1
~C2
m H�1�m �kr1� eim

~y1 �
Xm��1

m�ÿ1
~C1
m H�1�m �kr2� eim

~y2 , �29�

sxFs �
Xm��1

m�ÿ1
�ÿ1�m ~C2

ÿm H�1�m �kr1� eim
~y1 �

Xm��1
m�ÿ1

�ÿ1�m ~C1
ÿm H�1�m �kr2� eim

~y2 , �30�

syFs �
Xm��1

m�ÿ1
�ÿ1�m ~C1

ÿm H�1�m �kr1� eim
~y1 �

Xm��1
m�ÿ1

�ÿ1�m ~C2
ÿm H�1�m �kr2� eim

~y2 : �31�

From equations (10±13) and equations (28±31), one can write

Fs � F�A1�
s � F�A2�

s � F�B1�
s � F�B2�

s , �32�
with

F�A1�
s �

Xm��1
m�ÿ1

~C�A1�
m H�1�m �kr1� eim

~y1 �
Xm��1

m�ÿ1
~C�A1�
m H�1�m �kr2� eim

~y2 , �33�



792 Y. DECANINI ET AL.

F�A2�
s �

Xm��1
m�ÿ1

~C�A2�
m H�1�m �kr1� eim

~y1 �
Xm��1

m�ÿ1
~C�A2�
m H�1�m �kr2� eim

~y2 , �34�

F�B1�
s �

Xm��1
m�ÿ1

~C�B1�
m H�1�m �kr1� eim

~y1 ÿ
Xm�ÿ1

m�ÿ1
~C�B1�
m H�1�m �kr2� eim

~y2 , �35�

F�B2�
s �

Xm��1
m�ÿ1

~C�B2�
m H�1�m �kr1� eim

~y1 ÿ
Xm�ÿ1

m�ÿ1
~C�B2�
m H�1�m �kr2� eim

~y2 : �36�

Here the new scattering coe�cients ~C
�A1�
m , ~C

�A2�
m , ~C

�B1�
m and ~C

�B2�
m must satisfy

~C�A1�ÿm � �ÿ1�m ~C�A1�
m , ~C�A2�ÿm � ÿ�ÿ1�m ~C�A2�

m , �37�

~C�B1�ÿm � ÿ�ÿ1�m ~C�B1�
m , ~C�B2�ÿm � �ÿ1�m ~C�B2�

m : �38�
The unknown coe�cients ~C

�A1�
m , ~C

�A2�
m , ~C

�B1�
m and ~C

�B2�
m can be now determined

from the boundary conditions at the surface of the cylinders. In fact, because we
have taken into account the symmetries of the scatterer, it is enough to apply
boundary conditions at the surface of only one cylinder. Moreover, boundary
conditions are separately written in the four representations. For example, in the
case of Dirichlet boundary conditions (soft cylinders), one can write

�F�A1�
inc � F�A1�

s �r2�a � 0, �F�A2�
inc � F�A2�

s �r2�a � 0, �39, 40�

�F�B1�
inc � F�B1�

s �r2�a � 0, �F�B2�
inc � F�B2�

s �r2�a � 0: �41, 42�
From equations (19±22), (33±38), and from Graf's Addition Theorems

Jm�kr� eimy �
Xp��1
p�ÿ1

imÿp Jmÿp
kd

2

� �
Jp�kr2� eipy2 , �43�

H�1�m �kr1� eimy1 �
Xp��1
p�ÿ1

imÿp H�1�mÿp�kd� Jp�kr2� eipy2 , �44�

which permit one to express all the ®elds in the co-ordinate system (r2, y2),
equations (39±42) respectively readXp��1

p�0
M�A1�

mp
~C�A1�
p � a�A1�

m Sm�ka�, for me0, �45�

Xp��1
p�1

M�A2�
mp

~C�A2�
p � a�A2�

m Sm�ka�, for me1, �46�
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Xp��1
p�1

M�B1�
mp

~C�B1�
p � ÿa�B1�

m Sm�ka�, for me1, �47�

Xp��1
p�0

M�B2�
mp

~C�B2�
p � ÿa�B2�

m Sm�ka�, for me0, �48�

where the matrices M
�A1�
mp , M

�A2�
mp , M

�B1�
mp and M

�B2�
mp are given by

M�A1�
mp � dmp ÿ

gp
2
�ÿ1�m�H�1�mÿp�kd� � �ÿ1�p H�1�m�p�kd��Sm�ka�, �49�

M�A2�
mp � dmp ÿ �ÿ1�m�H�1�mÿp�kd� ÿ �ÿ1�p H�1�m�p�kd��Sm�ka�, �50�

M�B1�
mp � dmp � �ÿ1�m�H�1�mÿp�kd� ÿ �ÿ1�p H�1�m�p�kd��Sm�ka�, �51�

M�B2�
mp � dmp �

gp
2
�ÿ1�m�H�1�mÿp�kd� � �ÿ1�p H�1�m�p�kd��Sm�ka�: �52�

Here gp denotes the Neumann factor given by g0=1 and gp=2(p>0). The

vector Sm(ka), which includes Dirichlet boundary conditions is given by

Sm�ka� � ÿ Jm�ka�
H�1�m �ka�

, �53�

while the vectors a�A1�
m , a�A2�

m , a�B1�
m and a�B2�

m , which are directly linked to the

incident wave, are written as

a�A1�
m � 1

4 �eima � �ÿ1�m eÿima� ei kd2 sin a � 1
4�eÿima � �ÿ1�m eima� ei kd2 sin a, �54�

a�A2�
m � ÿ1

4 �eima ÿ �ÿ1�m eÿima� ei kd2 sin a � 1
4�eÿima ÿ �ÿ1�m eima� ei kd2 sin a, �55�

a�B1�
m � ÿ1

4 �eima ÿ �ÿ1�m eÿima� ei kd2 sin a ÿ 1
4�eÿima ÿ �ÿ1�m eima� ei kd2 sin a, �56�

a�B2�
m � 1

4 �eima � �ÿ1�m eÿima� ei kd2 sin a ÿ 1
4�eÿima � �ÿ1�m eima� ei kd2 sin a: �57�

Our algebraic approach developed for soft cylinders is still valid for more

general boundary conditions. The scattering problem remains governed by

equations (45±52) and equations (54±57). It is only necessary to change the

vector Sm(ka) in order to take into account the particular boundary conditions.

In the case of Neumann boundary conditions (rigid cylinders), the vanishing of

the normal derivative of the total ®eld yields
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Sm�ka� � ÿ J 0m�ka�
H
0�1�
m �ka�

: �58�

For two elastic cylinders immersed in water, one obtains

Sm�ka� � D
�1�
m �ka�

Dm�ka� �59�

from the continuity of normal displacements and stress continuity relations.
Here D

�1�
m and Dm are the usual determinants of third rank with coe�cients

depending on the longitudinal and transverse velocities in the solid and the
sound velocity in the liquid [8, 9].
It should be noted that the scattering of a plane acoustic wave by a system of

two identical and parallel cylinders reduces to the solution of equations (45±48),
an in®nite set of four systems of algebraic equations, each one associated with a
given irreducible representation. The unknown coe�cients de®ning the scattered
®elds are uncoupled. The disappearance of a coupling is due to the symmetry
considerations and greatly simpli®es the treatment of the problem: the matrices
M�A1�, M�A2�, M�B1� and M�B2� involved in calculations are better conditioned
than those corresponding to the associated coupled problem. Indeed, the former
can be considered as square roots of the latter. The four systems of equations
can then be numerically solved by truncation and used to obtain the far ®eld
form function [10] of the system for various angles of incidence a, angles of
scattering y and separation distances d.
From now on, interest is focused on the resonances of the two-cylinder

scatterer. The scattering resonances are the poles of the coe�cients ~C
�A1�
p , ~C

�A2�
p ,

~C
�B1�
p and ~C

�B2�
p . They can be determined by searching the zeros of detM�A1�,

detM�A2�, detM�B1� and detM�B2� in the complex ka-plane and they are then
naturally classi®ed according to the irreducible representations A1, A2, B1 and
B2.

3. NUMERICAL RESULTS AND DISCUSSION

Numerical calculations of the zeros of detM�A1�, detM�A2�, detM�B1� and
detM�B2� have been performed, for the separation distance d=6a by replacing
the in®nite matrices M�A1�, M�A2�, M�B1� and M�B2� by associated matrices of rank
N, with

N � sup�8, �ka� 4�ka�1=3 � 1��: �60�
The above truncation order N has been chosen from the numerical discussions of
Young and Bertrand [1] and Nussenzveig [11], and it has been numerically
tested. Positions of the scattering resonances are determined in the complex ka-
plane by using the ``argument principle'' [12]: the integral

1

2ip

�
B

d

dka
�ln detM� dka �61�
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along the closed contour B provides the di�erence between the number of zeros

(with their multiplicities) of det M and the number of its poles (with their

multiplicities) lying in the enclosed region. The complex ka-plane is scanned in

order to isolate all the zeros. It should be noted that such a process is greatly

improved as a consequence of the present algebraic study which permits one to

divide the work into four independent parts. Then the integral

1

2ip

�
B
ka

d

dka
�ln detM� dka �62�

permits one to calculate the co-ordinates of the zeros isolated in the enclosed

region. Positions of the scattering resonances have been determined for the

restricted domain 0ERe kaE 26 and ÿ1.8E Im kaE 0. For larger reduced

frequencies the computation of resonances becomes a time-consuming task.

Moreover, such a choice is suitable for a future comparison between the exact

positions of resonances and those calculated from a ray theory approximation.

Figure 2 (and respectively Figure 3) presents the positions of the resonances

for Dirichlet (and respectively Neumann) boundary conditions. Resonances are

distributed along certain curves of the complex ka-plane. A physical

interpretation of these di�erent curves by the phase-matching of geometrical and

surface waves along closed paths seems possible. For example, in the next
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Figure 2. Location of the scattering resonances in the complex ka-plane. (Two soft cylinders,
separation distance d=6a.) Resonances corresponding to one single isolated cylinder are rep-
resented by open circles (*). Resonances of the A1 representation are denoted by (*), resonances
of the A2 representation are denoted by (�), resonances of the B1 representation are denoted by
(6), resonances of the B2 representation are denoted by (+).
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section, is provided a physical interpretation for the resonances lying on the lines
close to the real ka-axis.
Figure 4 (and respectively Figure 5) presents the positions of the resonances

for two stainless steel (and respectively tungsten carbide) cylinders immersed
in water. The computations were carried out for the following parameters:
water (r0=1 g cmÿ3, v=1480 m sÿ1), stainless steel (r0=7.98 g cmÿ3,
vl=5894 m sÿ1, vt=3093 m sÿ1), and tungsten carbide (r0=13.80 g cmÿ3,
vl=6860 m sÿ1, vt=4185 m sÿ1). Far from the real ka-axis, the distribution of
resonances is very close to the distribution corresponding to rigid cylinders. By
contrast, for ÿ0.4IIm kaI0, new features occur. All the resonances generated
on a single isolated cylinder by the Rayleigh surface wave and the Brekhovskikh
surface waves (whispering gallery surface waves) disappear because of the
interactions between the two cylinders. They are split up into four new distinct
resonances, each one corresponding to an irreducible representation of C2v .

4. PHYSICAL INTERPRETATION OF RESONANCES

By generalizing the approach developed by Wirzba, [13] the resonances lying
on the lines close to the real ka-axis can be associated with the geometrical path
plotted in Figure 6. The characteristic equations detM�A1� � 0, detM�A2� � 0,
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Figure 3. Location of the scattering resonances in the complex ka-plane. (Two rigid cylinders,
separation distance d=6a.) Resonances corresponding to one single isolated cylinder are rep-
resented by open circles (*). Resonances of the A1 representation are denoted by (*), resonances
of the A2 representation are denoted by (�), resonances of the B1 representation are denoted by
(6), resonances of the B2 representation are denoted by (+).
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detM�B1� � 0 and detM�B2� � 0 which respectively provide the locations of the

A1, A2, B1 and B2 resonances in the complex ka-plane can be approximated for

high frequencies by

1ÿ 1
2

Xm��1
m�0

gm�ÿ1�mSm�ka��H�1�0 �kd� � �ÿ1�m H
�1�
2m�kd�� � 0 for A1 resonances,

�63�

1ÿ
Xm��1
m�1
�ÿ1�mSm�ka��H�1�0 �kd� ÿ �ÿ1�m H

�1�
2m�kd�� � 0 for A2 resonances,

�64�

1�
Xm��1
m�1
�ÿ1�mSm�ka��H�1�0 �kd� ÿ �ÿ1�m H

�1�
2m�kd�� � 0 for B1 resonances,

�65�
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Figure 4. Location of the scattering resonances in the complex ka-plane. (Two stainless steel
cylinders immersed in water, separation distance d=6a.) Resonances corresponding to one single
isolated cylinder are represented by open circles (*). Resonances of the A1 representation are
denoted by (*), resonances of the A2 representation are denoted by (�), resonances of the B1 rep-
resentation are denoted by (6), resonances of the B2 representation are denoted by (+).
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1� 1
2

Xm��1
m�0

gm�ÿ1�mSm�ka��H�1�0 �kd� � �ÿ1�m H
�1�
2m�kd�� � 0 for B2 resonances:

�66�
The previous equations are directly obtained from the approximation

det (I+A)0 1+Tr A which is a consequence of the expansion

det�I�A� � exp�Tr ln�I�A�� � 1� Tr Aÿ 1
2�Tr A2 ÿ �Tr A�2� � � � � : �67�
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Figure 5. Location of the scattering resonances in the complex ka-plane. (Two tungsten carbide
cylinders immersed in water, separation distance d=6a.) Resonances corresponding to one single
isolated cylinder are represented by open circles (*). Resonances of the A1 representation are
denoted by (*), resonances of the A2 representation are denoted by (�), resonances of the B1 rep-
resentation are denoted by (6), resonances of the B2 representation are denoted by (+).

O2O1

d – 2a

d

Figure 6. The closed geometrical path in the two-cylinder scattering problem.
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First consider the partial wave series in equation (63)

1
2

Xm��1
m�0

gm�ÿ1�mSm�ka��H�1�0 �kd� � �ÿ1�m H
�1�
2m�kd��: �68�

By using the usual Watson transformation [14], it can be converted into the

contour integral

i
2P

�
C

S��ka��ei�p H�1�0 �kd� �H
�1�
2� �kd��

cos��p�
sin��p� d�, �69�

where S��ka� and H
�1�
2� �kd� are analytic functions in the complex �-plane,

interpolating the numbers Sm(ka) and H
�1�
2m�kd�. Here the contour C encircles the

real positive axis in the clockwise sense and P stands for Cauchy principal value

at the origin. The deformation of the contour C away from the real positive axis

permits one to extract from equation (69) the purely geometrical contribution

(here surface wave contributions are not taken into account)

1
4

�
Cs

H�2�� �ka�
H�1�� �ka�

R��H�1�0 �kd� ei�p �H
�1�
2� �kd�� d�: �70�

Here R� denotes the direct re¯ection coe�cient from the scatterer surface.

Transmitted waves and internal re¯ected waves have been neglected in the Debye

expansion [15, 16], so it will be assumed in what follows that R� does not depend

on ka. The contour Cs is described in Figure 7. It surrounds the poles of S��ka�
and can be continuously deformed in order to evaluate, in the high-frequency

limit ka� 1 and kd� 1, the integral (70) by the saddle-point method. By

Cs

ka Re

Im

s

Figure 7. Contour Cs used to separate out the geometrically re¯ected wave.
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inserting in the integral (70) the Debye asymptotic expansions for the Hankel

functions [7]

H�1,2�� �z�0
���������������������

2

p
���������������
z2 ÿ �2
p

s
exp 2i

���������������
z2 ÿ �2
p

3i� arccos
�

z
3i

p
4

� �
, �71�

the position of the saddle-point �s can be determined. This gives �s=0 and the

integral (70) asymptotically reduces to

R0

2

����������������
a

2dÿ 4a

r
�

�����
a

2d

r� �
exp�ik�dÿ 2a��: �72�

This contribution is obviously associated with the geometrical path described in

Figure 6. More precisely, R0 denotes the direct re¯ection coe�cient under

normal incidence while the term k�dÿ 2a� corresponds to the line integral of the

propagation vector k over the geometrical path. Now, by replacing the partial

wave series in equation (63) by the purely geometrical contribution (72), one

obtains from the condition

1ÿ R0

2

����������������
a

2dÿ 4a

r
�

�����
a

2d

r� �
exp�ik�dÿ 2a�� � 0 �73�

the locations of the A1 geometrical resonances in the complex ka-plane:

ka�A1��p� � a

dÿ 2a
�2p� 1�p� i ln

R0

2

����������������
a

2dÿ 4a

r
�

�����
a

2d

r� �� �� �
, p 2 N: �74�

It should be noted that equation (74) has been obtained under restrictive

hypotheses: the contributions of transmitted waves, internal re¯ected waves and

surface waves have been neglected.

As far as equations (64±66) are concerned, slight changes in the previous

calculations permits one to obtain the following high frequency approximations

for the locations of the resonances in the complex ka-plane:

ka�A2��p� � a

dÿ 2a
2pp� i ln

R0

2

����������������
a

2dÿ 4a

r
ÿ

�����
a

2d

r� �� �� �
, p 2 N, �75�

ka�B1��p� � a

dÿ 2a
�2p� 1�p� i ln

R0

2

����������������
a

2dÿ 4a

r
ÿ

�����
a

2d

r� �� �� �
, p 2 N, �76�

ka�B2��p� � a

dÿ 2a
2pp� i ln

R0

2

����������������
a

2dÿ 4a

r
�

�����
a

2d

r� �� �� �
, p 2 N: �77�

The exact values and high frequency approximations of complex resonances

ka are presented in Tables 3 and 4 for Dirichlet boundary conditions (R0=1),

and in Table 5 for Neumann boundary conditions (R0=ÿ1). Good agreement is

found even for low frequencies. A physical interpretation has been provided for
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the resonances lying on the lines close to the real ka axis in terms of the phase-
matching of geometrical rays along the closed path described in Figure 6.

5. CONCLUSION AND PERSPECTIVES

In the study of multiple scattering by two identical cylinders, the ®elds
scattered by each cylinder are usually represented by means of two sums over
partial waves, with unknown coe�cients that are coupled through an in®nite set
of two linear, complex, algebraic equations. It has been shown that, by taking
into acount the symmetries of the scatterer, the use of group representation
theory permits one to obtain an in®nite set of four linear complex algebraic
equations where the unknown coe�cients are uncoupled. This feature greatly
simpli®es numerical calculations involved in this problem. This new approach
can also be applied to transient situations and to more general problems of
multiple scattering from an arbitrary number of cylinders when symmetries are
present. Similarly, symmetry considerations can also be used to study sound
scattering by a system of spheres. In the particular case of scattering by two

TABLE 3

Comparison between exact and high-frequency approximated resonances for Dirichlet
boundary conditions (separation distance d= 6a)

Exact Asymptotic

A1(p=0) 0�7260ÿ 0�2612i 0�7854ÿ 0�2840i
B2(p=1) 1�5312ÿ 0�2747i 1�5708ÿ 0�2840i
A1(p=1) 2�3274ÿ 0�2788i 2�3562ÿ 0�2840i
B2(p=2) 3�1195ÿ 0�2815i 3�1416ÿ 0�2840i
A1(p=2) 3�9088ÿ 0�2832i 3�9270ÿ 0�2840i
B2(p=3) 4�6967ÿ 0�2841i 4�7124ÿ 0�2840i
A1(p=3) 5�4842ÿ 0�2846i 5�4978ÿ 0�2840i
B2(p=4) 6�2713ÿ 0�2850i 6�2832ÿ 0�2840i
A1(p=4) 7�0579ÿ 0�2853i 7�0686ÿ 0�2840i
B2(p=5) 7�8443ÿ 0�2855i 7�8540ÿ 0�2840i
A1(p=5) 8�6306ÿ 0�2857i 8�6394ÿ 0�2840i
B2(p=6) 9�4167ÿ 0�2858i 9�4248ÿ 0�2840i
A1(p=6) 10�2027ÿ 0�2859i 10�2102ÿ 0�2840i
B2(p=7) 10�9886ÿ 0�2860i 10�9956ÿ 0�2840i
A1(p=7) 11�7744ÿ 0�2861i 11�7810ÿ 0�2840i
B2(p=8) 12�5602ÿ 0�2861i 12�5664ÿ 0�2840i
A1(p=8) 13�3460ÿ 0�2862i 13�3518ÿ 0�2840i
B2(p=9) 14�1317ÿ 0�2862i 14�1372ÿ 0�2840i
A1(p=9) 14�9174ÿ 0�2862i 14�9226ÿ 0�2840i
B2(p=10) 15�7030ÿ 0�2863i 15�7080ÿ 0�2840i
A1(p=10) 16�4887ÿ 0�2863i 16�4934ÿ 0�2840i
B2(p=11) 17�2743ÿ 0�2863i 17�2788ÿ 0�2840i
A1(p=11) 18�0599ÿ 0�2863i 18�0642ÿ 0�2840i
B2(p=12) 18�8455ÿ 0�2864i 18�8496ÿ 0�2840i
A1(p=12) 19�6310ÿ 0�2864i 19�6350ÿ 0�2840i
B2(p=13) 20�4165ÿ 0�2864i 20�4204ÿ 0�2840i
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spheres, the symmetry group involved is the continuous group D1h [5] (the two-
sphere scatterer is invariant (i) under rotations about the system axis, (ii) under
re¯ection in the plane perpendicular to the system axis and which passes through
the symmetry center of the system, (iii) under re¯ection in any plane passing
through the axis of the system). It is then natural to solve this scattering problem
by using the corresponding irreducible representations.
From symmetry considerations, the resonances of the two-cylinder scatterer

have been partially classi®ed. They lie in four distinct families associated with
the four irreducible representations A1, A2, B1, B2 of the symmetry group of the
scatterer C2v . From a mathematical point of view it would be useful to obtain a
full classi®cation of the two-cylinder scatterer resonances. With this aim in view,
several techniques of Geometrical Theory of Di�raction and algebraic topology
[17] could be initiated.
As a consequence of this approach, new physical e�ects are expected (splitting

up of resonances and resonances of interaction between the two scatterers). It
would be interesting to experimentally con®rm these physical e�ects. It should be
noted that in electromagnetism, in the context of microwave two-disc scattering,

TABLE 4

Comparison between exact and high-frequency approximated resonances for Dirichlet
boundary conditions (separation distance d= 6a)

Exact Asymptotic

B1(p=0) 0�6060ÿ 0�5774i 0�7854ÿ 0�8571i
A2(p=1) 1�5486ÿ 0�7068i 1�5708ÿ 0�8571i
B1(p=1) 2�4210ÿ 0�8287i 2�3562ÿ 0�8571i
A2(p=2) 3�0041ÿ 0�8459i 3�1416ÿ 0�8571i
B1(p=2) 3�8845ÿ 0�8158i 3�9270ÿ 0�8571i
A2(p=3) 4�7095ÿ 0�8447i 4�7124ÿ 0�8571i
B1(p=3) 5�4729ÿ 0�8780i 5�4978ÿ 0�8571i
A2(p=4) 6�2514ÿ 0�8491i 6�2832ÿ 0�8571i
B1(p=4) 7�0555ÿ 0�8502i 7�0686ÿ 0�8571i
A2(p=5) 7�8403ÿ 0�8630i 7�8540ÿ 0�8571i
B1(p=5) 8�6189ÿ 0�8577i 8�6394ÿ 0�8571i
A2(p=6) 9�4112ÿ 0�8544i 9�4248ÿ 0�8571i
B1(p=6) 10�1991ÿ 0�8595i 10�2102ÿ 0�8571i
A2(p=7) 10�9813ÿ 0�8594i 10�9956ÿ 0�8571i
B1(p=7) 11�7690ÿ 0�8568i 11�7810ÿ 0�8571i
A2(p=8) 12�5567ÿ 0�8588i 12�5664ÿ 0�8571i
B1(p=8) 13�3409ÿ 0�8595i 13�3518ÿ 0�8571i
A2(p=9) 14�1269ÿ 0�8581i 14�1372ÿ 0�8571i
B1(p=9) 14�9139ÿ 0�8587i 14�9226ÿ 0�8571i
A2(p=10) 15�6990ÿ 0�8594i 15�7080ÿ 0�8571i
B1(p=10) 16�4846ÿ 0�8587i 16�4934ÿ 0�8571i
A2(p=11) 17�2710ÿ 0�8589i 17�2788ÿ 0�8571i
B1(p=11) 18�0565ÿ 0�8595i 18�0642ÿ 0�8571i
A2(p=12) 18�8420ÿ 0�8591i 18�8496ÿ 0�8571i
B1(p=12) 19�6281ÿ 0�8590i 19�6350ÿ 0�8571i
A2(p=13) 20�4135ÿ 0�8594i 20�4204ÿ 0�8571i
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Kudrolli and Sridhar [18] have observed resonances corresponding to the A2

antisymmetric poles of the S-matrix. In acoustics, similar experiments in the case
of the three-cylinder scatterer are in preparation [19].

REFERENCES

1. J. W. YOUNG and J. C. BERTRAND 1975 Journal of the Acoustical Society of
America 58, 1190±1195. Multiple scattering by two cylinders.

2. L. D. LANDAU and E. M. LIFSHITZ 1975 Quantum Mechanics. Oxford: Pergamon.
3. P. GASPARD and S. A. RICE 1989 Journal of Chemical Physics 90, 2255±2262. Exact

quantization of the scattering from a classically chaotic repellor.
4. P. CVITANOVICÂ and B. ECKHARDT 1993 Nonlinearity 6, 277±311. Symmetry decom-

position of chaotic dynamics.
5. M. HAMERMESH 1989 Group Theory and its Application to Physical Problems. New

York: Dover.
6. R. G. NEWTON 1982 Scattering Theory in Waves and Particles. New York: Springer

Verlag.
7. M. A. ABRAMOWITZ and I. STEGUN (editors) 1964 Handbook of Mathematical

Functions. New York: Dover.

TABLE 5

Comparison between exact and high-frequency approximated resonances for Neumann
boundary conditions (separation distance d= 6a)

Exact Asymptotic

B2(p=0) 0�8815ÿ 0�2065i 0�7854ÿ 0�2840i
A1(p=1) 1�7264ÿ 0�2561i 1�5708ÿ 0�2840i
B2(p=1) 2�3125ÿ 0�3221i 2�3562ÿ 0�2840i
A1(p=2) 3�1754ÿ 0�2545i 3�1416ÿ 0�2840i
B2(p=2) 3�9988ÿ 0�2778i 3�9270ÿ 0�2840i
A1(p=3) 4�7291ÿ 0�3331i 4�7124ÿ 0�2840i
B2(p=3) 5�5149ÿ 0�2720i 5�4978ÿ 0�2840i
A1(p=4) 6�3248ÿ 0�2800i 6�2832ÿ 0�2840i
B2(p=4) 7�0911ÿ 0�3082i 7�0686ÿ 0�2840i
A1(p=5) 7�8655ÿ 0�2799i 7�8540ÿ 0�2840i
B2(p=5) 8�6670ÿ 0�2812i 8�6394ÿ 0�2840i
A1(p=6) 9�4445ÿ 0�2985i 9�4248ÿ 0�2840i
B2(p=6) 10�2194ÿ 0�2838i 10�2102ÿ 0�2840i
A1(p=7) 11�0156ÿ 0�2823i 10�9956ÿ 0�2840i
B2(p=7) 11�7978ÿ 0�2937i 11�7810ÿ 0�2840i
A1(p=8) 12�5746ÿ 0�2857i 12�5664ÿ 0�2840i
B2(p=8) 13�3671ÿ 0�2832i 13�3518ÿ 0�2840i
A1(p=9) 14�1515ÿ 0�2911i 14�1372ÿ 0�2840i
B2(p=9) 14�9301ÿ 0�2866i 14�9226ÿ 0�2840i
A1(p=10) 15�7203ÿ 0�2839i 15�7080ÿ 0�2840i
B2(p=10) 16�5057ÿ 0�2895i 16�4934ÿ 0�2840i
A1(p=11) 17�2858ÿ 0�2871i 17�2788ÿ 0�2840i
B2(p=11) 18�0744ÿ 0�2844i 18�0642ÿ 0�2840i
A1(p=12) 18�8603ÿ 0�2885i 18�8496ÿ 0�2840i
B2(p=12) 19�6416ÿ 0�2873i 19�6350ÿ 0�2840i
A1(p=13) 20�4291ÿ 0�2849i 20�4204ÿ 0�2840i



804 Y. DECANINI ET AL.

8. J. J. FARAN 1951 Journal of the Acoustical Society of America 23, 405±418. Sound
scattering by solid cylinders and spheres.

9. R. D. DOOLITTLE, H. UÈ BERALL and P. UGINCÂ IUS 1968 Journal of the Acoustical
Society of America 43, 1±14. Sound scattering by elastic cylinders.

10. N. D. VEKSLER 1993 Resonance Acoustic Spectroscopy, Berlin: Springer-Verlag.
11. H. M. NUSSENZVEIG 1992 Di�raction E�ects in Semiclassical Scattering. Cambridge:

Cambridge University Press.
12. E. T. WHITTAKER and G. N. WATSON 1927 A Course of Modern Analysis.

Cambridge: Cambridge University Press.
13. A. WIRZBA 1992 Chaos 2, 77±83. Validity of the semiclassical periodic orbit approx-

imation in the 2- and 3-disk problems.
14. G. N. WATSON 1918 Proceedings of the Royal Society of London A95, 83±99. The

di�raction of electric waves by the earth.
15. P. J. DEBYE 1908 Physik. Z. 9, 775±778. Das elektromagnetische Feld um einen

Zylinder und die Theorie des Regenbogens.
16. D. BRILL and H. UÈ BERALL 1970 Journal of the Acoustical Society of America 50,

921±939. Acoustic waves transmitted through solid elastic cylinders.
17. C. NASH and S. SEN 1983 Topology and Geometry for Physicists. London: Academic

Press.
18. A. KUDROLLI and S. SRIDHAR 1995 Proceedings of the 4th Drexel Conference.

Singapore: World Scienti®c (to appear).
19. Y. DECANINI, A. FOLACCI E. FOURNIER and P. GABRIELLI, in preparation.


	INTRODUCTION
	Figure 1

	MATHEMATICAL FORMALISM
	Table 1
	Table 2

	NUMERICAL RESULTS AND DISCUSSION
	Figure 2
	Figure 3

	PHYSICAL INTERPRETATION OF RESONANCES
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Table 3

	CONCLUSION AND PERSPECTIVES
	Table 4
	Table 5

	REFERENCES

